GRAPHICS PROCESSING UNITS

Slides by: Pedro Tomás & Leonel Sousa

TÉCNICO

Additional reading: *Computer Architecture: A Quantitative Approach"*, 6th edition, <u>Chapter 4</u>, John L. Hennessy and David A. Patterson, Morgan Kaufmann, 2017

ADVANCED COMPUTER ARCHITECTURES

ARQUITECTURAS AVANÇADAS DE COMPUTADORES (AAC)

Outline

2

- □ Types of parallelism
 - Flynn's taxonomy
- □ GPU Architectures

Types of parallelism

- 3 Advanced Computer Architectures, 2021
 - Instruction-Level Parallelism
 - Available when multiple instructions can be executed simultaneously
 - Exploitable by pipelining execution and through superscalar and VLIW architectures
 - Data-Level Parallelism
 - Available by applying the same operation over different data or, equivalently, by dividing the data among multiple processing elements
 - **Exploitable by:**
 - Using SIMD instructions (vector processing) fine-grained parallelism
 - Relying on multiple cores within a single processor coarse-grained parallelism
 - Using multiple machines (cluster-level) coarser-grained parallelism
 - Task-Level Parallelism
 - Available by dividing the workload into multiple operations (functions), which are applied on the same or on different data
 - **Exploited by using multiple processing elements (e.g., different cores or machines)**

⁸ Graphics Processing Pipeline

What are the computational requirements? Which parallelism levels can be exploited? How to design the architecture?

Graphics processing Micro-architecture design goals

Advanced Computer Architectures, 2021

	General Purpose Processors (GPPs)	Special Purpose Processors (SPPs)
Design Goals	Support for a wide range of applications Requires a flexible ISA	Efficient support for a reduced set of applications
Design Constraints	Speed (Latenc Co Perfor Power and Ener	y/Throughtput) ost mance rgy consumption

TÉCNICO LISBOA

Graphics processing DirectX11 Graphics Pipeline

Advanced Computer Architectures, 2021

3P

Graphics processing Exploitable parallelism

Advanced Computer Architectures, 2021

11

- Millions of parallel computations to perform
 - In general the computation of a given pixel is independent from the adjacent pixels

- The modern graphics pipeline is complex, having to support different operations, over different display areas
 - Requires support for task-level parallelism

Graphics processing Exploitable parallelism

12 Advanced Computer Architectures, 2021

Millions of parallel computations to perform

In general the computation of a given pixel is independent from the adjacent pixels

➔ Massive data-level parallelism

- The modern graphics pipeline is complex, having to support different operations, over different display areas
 - → Requires support for task-level parallelism
- Modern GPUs provide a uniform way of exploiting both parallelism levels by means of thread-level parallelism

Micro-architecture single-core design

13 Advanced Computer Architectures, 2021

- Exploit highly parallel and data intensive computations
- Provide support for a wide number of threads
- Requires high throughput for high definition displays
- What should the be main characteristics?
 - Out-of-order execution?
 - Branch Prediction?
 - Pipeline Length?
 - Forwarding mechanisms?
 - Register file size?
 - SIMD instructions?
 - VLIW instructions?

Micro-architecture single-core design

- 14 Advanced Computer Architectures, 2021
 - Design goals:
 - Exploit highly parallel and data intensive computations
 - Provide support for a wide number of threads
 - Requires high throughput for high definition displays
 - What should the be main characteristics?
 - Out-of-order execution? No!
 - Branch Prediction? No!
 - Pipeline Length? Long!
 - Forwarding mechanisms? No!
 - Register file size? Very Large! (simultaneous support for multiple running threads)
 - SIMD instructions? Yes! (Each thread corresponds to a different vector element)
 - VLIW instructions? Yes! (Can be used by allow multiple threads per VLIW)

(resolve hazards by interleaving execution with other threads)

Graphics processing Micro-architecture single-core design

- SIMD-Like: At each cycle, each core issues the same instruction for a group of threads
 - A single instruction is performed on multiple data
 - Reduces pressure on the IF stages
 - Simpler control
 - If there is at least one execution unit per vector element, there are no structural (execution) hazards
 - If one thread stalls (e.g., memory accesses) all threads (in the same vector) stall
 - Low functional unit utilization
 - e.g., when using FP operations, the integer execution units are stalled

Graphics processing Micro-architecture single-core design

- VLIW-Like: At each cycle, the core issues a bundle of independent instructions from one or more threads
 - Stalls on one thread have limited impact on the execution of other threads
 - Reduced number of execution units
 - Reduces static power consumption
 - Increases hardware resource usage
 - Requires a high instruction memory (cache) throughput
 - Requires inter-thread parallelism to be extracted dynamically
 - Instruction scheduling is more complex
 - Leads to a higher power consumption

Graphics processing Micro-architecture single-core design

17

- MIMD-Like: At each cycle, the core issues multiple instructions from multiple vectors (each vector is composed of a group of n threads)
 - Allows increasing the functional unit utilization, regarding a pure SIMD-like approach
 - If one thread stalls, issue a different set of threads
 - Threads are statically bound to a given group to ease thread control
 - NVIDIA uses the terminology 'warp' to designate a group of 32 threads
 - AMD uses the naming 'wavefront' to represent a group of 64 threads
 - Requires the co-existence of multiple hardware schedulers

Micro-architecture single-core design

Advanced Computer Architectures, 2021

- Exploit highly parallel and data intensive computations
- Provide support for a wide number of threads
- Requires high throughput for high definition displays
- How can we scale the performance?
 - Use simple cores
 - Allow the co-existence of multiple cores, each supporting a massive number of threads
 - Modern GPPs are usually composed of a relatively small number of cores (8-16), each supporting a small number of running threads (up to 2)
 - Modern GPUs (e.g., NVIDIA GeForce GTX 2080Ti) are composed of more cores (60 SMs), each supporting the parallel execution of hundreds of threads (2048), typically executed in groups (1 warp = 32 threads)

Micro-architecture single-core design

19 Advanced Computer Architectures, 2021

- Exploit highly parallel and data intensive computations
- Provide support for a wide number of threads
- Requires high throughput for high definition displays
- Instruction Set Architecture?
 - Modern GPPs use standard scalar ISAs, which are further extended to support a set of vector instructions
 - Modern GPUs use special purpose ISA, which are oriented for parallel thread (warp) execution
 - Generally supports most general purpose programming operations, although usually relying on predicated instructions to overcome control operations (branches) that lead to warp-level divergence

Micro-architecture single-core design

Advanced Computer Architectures, 2021

- Exploit highly parallel and data intensive computations
- Provide support for a wide number of threads
- Requires high throughput for high definition displays
- Memory hierarchy?
 - Modern GPPs use multiple cache memories (L1, L2, L3) to minimize data access latency and avoid read-after-load hazards
 - Modern GPUs typically use only 2 cache levels (L1 and L2), together with a main (global) memory
 - Typical GPUs do not have access to the CPU global memory, hence requiring explicit data transfers between CPU and GPU
 - Each GPU core usually provides a low latency (reduced size) scratchpad memory, as well as a constant (texture) memory
 - The GPU L2 cache memory is shared among all cores
 - The GPU L1 cache is special: it can be used for register caching and optionally for data caching

Micro-architecture single-core design

21 Advanced Computer Architectures, 2021

Design goals:

- Exploit highly parallel and data intensive computations
- Provide support for a wide number of threads
- Requires high throughput for high definition displays

□ Syncronization?

- Modern GPPs provide mechanisms for explicit synchronization and cache coherence among cores
- Modern GPUs typically do not provide for such synchronization mechanisms:
 - Warps/Wavefronts are grouped in blocks and the execution of all threads within a block is assigned to a given core. Synchronization within a block of threads is possible, but not among different blocks (since blocks may be scheduled to different cores).

Micro-architecture single-core design

Advanced Computer Architectures, 2021

Design goals:

- Exploit highly parallel and data intensive computations
- Provide support for a wide number of threads
- Requires high throughput for high definition displays

Problems?

- GPU micro-architectures are specially efficient for massively parallel applications... but... they struggle when
 - Application requires periodic synchronization with the host processor
 - The overheads related with memory transfers between the host and the GPU cannot be efficiently hidden behind kernel execution
 - Kernels have limited parallelism (remember that GPUs use parallelism to hide data hazards)
 - Kernels have too much control (there is no branch prediction)
 - Kernels are too small and have a very fast execution time (overhead of launching the kernel limits processing performance)

NVIDIA G80 micro-architecture

24 Advanced Computer Architectures, 2021

□ In November 2006, the G80 micro-architecture introduced:

- Support for C programming
- Unification of the several processing pipelines, in order to allow support for vertex, geometry, pixel and computing programs.
- Introduction of the single-instruction multiple-thread (SIMT) execution model
- Shared memory and barrier synchronization mechanisms for inter-thread communication
- In June 2008, NVIDIA made a revision of the G80 architecture (codenamed GT200)
 - □ The number of stream processing cores increased from 128 to 240
 - Increased the size of the physical register file
 - Introduced hardware memory access coalescing
 - Introduced double precision floating point format

Fermi Micro-architecture Design goals (vs GT200)

25 Advanced Computer Architectures, 2021

Increase performance (especially double precision)

- New Stream Multiprocessor (SM) architecture
- Dual Warp Scheduler to allow simultaneously fetching and dispatching instructions from two independent warps
- Provide ECC support, to protect data against memory errors
- Introduce a true cache hierarchy
- Increase shared memory
- Faster context switching between programs
- Faster atomic operations

Fermi Micro-architecture

Architecture overview

26 Advanced Computer Architectures, 2021

- Each core is named a SM (Simultaneous Multiprocessor)
- A high-level GigaThread engine schedules the execution of the grid of blocks of threads to SMs

Workload (total number of threads)

Fermi Micro-architecture Block scheduling

Advanced Computer Architectures, 2021

27

Fermi Micro-architecture Block scheduling

28 Advanced Computer Architectures, 2021

- GPC GPC VDRAM VDRAM **Raster Engine Raster Engine** BO B3 B5 B5 BO B2 B4 **B**1 Host Interface VDRAN Unified L2 Cache **Giga**Thread VDRAM B3 B4 **B**5 B6 B1 B2 B7 B8 Multiple kernels (up to 16) may execute concurrently has long as they are from the same SM SM context Raster E GP • However, blocks are dispatched in-order. Thus, **Un-scheduled**
 - However, blocks are dispatched in-order. Thus,
 all blocks from one kernel have to be dispatched
 (i.e., assigned to a given SM), before starting
 dispatching blocks from the next kernel.

A high-level GigaThread engine schedules the execution of the grid of blocks of threads to SMs

Workload (total number of threads)

Fermi Micro-architecture

Simultaneous Multiprocessor (SM) Architecture

29 Advanced Computer Architectures, 2021

Each SM is composed of:

- Register file with 32K 32-bit registers
- 32 SPs, each composed of pipelined FP and integer ALU units
 - Supports up to 16 double precision fusedmultiply and add (FMA) operations per clock
- □ 16 Load/Store units
 - A warp of 32 threads takes 2 cycles to execute
- □ 4 specialized processing units (SPUs)
 - Supports transcendental instructions such as sin, cosine, reciprocal, and square root
 - Executes one thread per clock, i.e., a warp of 32 threads takes 8 cycles to execute)
- 2 warp schedulers capable of issuing up to one instruction per clock cycle from a single warp of threads
 - Because threads are assumed to be independent no inter-warp dependency check is performed

May lead to conflicts if two threads access the same memory position

Uniform Cache

Fermi Micro-architecture Warp scheduling

Advanced Computer Architectures, 2021

30

which warps are eligible to be issued.

Fermi Micro-architecture Warp scheduling

- The 4 SFUs are already operating over another warp
- The warp requires loading data from memory, but too many outstanding requests have already been issued

Fermi Micro-architecture Instruction Execution

Fermi Micro-architecture Memory Hierarchy

Kepler Micro-architecture Design goals

34 Advanced Computer Architectures, 2021

Introduces dynamic parallelism

- Kernels (calls to GPU functions) can now generate new work, generating a new grid of blocks, which are subsequently sent for execution
- Not only it allows to mitigate kernel call overheads, but also frees the CPU, allowing it to perform other tasks (task-level parallelism)
- This also requires the Grid Management Unit to allow suspending the execution of ongoing work

Kepler Micro-architecture Design goals

- Introduces dynamic parallelism
- Provide support for multiple work-queues, allowing different CPU cores to issue commands to the GPU on different CUDA streams.

Kepler Micro-architecture Design goals

Advanced Computer Architectures, 2021

Introduces dynamic parallelism

- Kernels (calls to GPU functions) can now generate new work, generating a new grid of blocks, which are subsequently sent for execution
- Not only it allows to mitigate kernel call overheads, but also frees the CPU, allowing it to perform other tasks (task-level parallelism)
- This also requires the Grid Management Unit to allow suspending the execution of ongoing work
- Provide support for multiple work-queues, allowing different CPU cores to issue commands to the GPU on different CUDA streams.
- Allow for data transfers between different GPU devices without needing to go to the CPU/system memory.
- Improve the performance per Watt
 - Design of a new stream multiprocessor architecture (now named SMX)

TÉCNICO LISBOA

Kepler Micro-architecture

Redesigned Simultaneous Multiprocessor (SMX)

37 Advanced Computer Architectures, 2021

Large increase in the number of ALUs

- 192 single-precision (or integer) CUDA cores (from 32 in Fermi)
- 64 double-precision FP units (from 16 in Fermi)
- 32 SFUs (from 4 in Fermi)
- 32 LD/ST units (from 16 in Fermi)
- Each dispatch port is composed of 16 functional units
 - Warps are executed in 2 groups of 16 threads (half-warp)
 - Execution units now operate at the standard SM frequency
- The increase in the number of ALUs results in a linear increase in power consumption; however, the reduction in half of the core operating frequency reduces power consumption by 8x
 - Power increases linearly with area, but decreases cubically with operating frequency.

SMX	(
								Ins	tructi	on Ca	che								
	War	p Scl	neduler			Wa	rp Sche	duler			Wai	'p Sch	neduler			Wa	rp Scl	heduler	
Di	spatc	h	Dispat	tch	Dispatch Dispatch				Di	Dispatch Dispatch					ispato	:h	Dispa	tch	
							Pog	istor	File (65 53	6 v 2	2-hit	\						
L_	_	_		_	_		Reg	ISTELL	ne (00,00	• • •	2-01L	,	_			_		
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SEU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SEU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Coro	Coro	Coro	DR Unit	Coro	Coro	Coro	DP Unit	LDIET	SELL	Coro	Coro	Coro	DR Linit	Coro	Coro	Coro	DPII		SEU
Core	Core	Core	DP Onit	Core	Core	Core	UP Unit	LU/ST	SPU	Core	Core	Core	DP Onit	Core	Core	Core			SPU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP U	nit LD/ST	SFU
								Inter	conne	ect Ne	twork								
	64 KB Shared Memory / L1 Cache																		
							48 K	B Re	ad-O	nly D	ata C	ache)						
	Tex		Tex			Tex		Tex	٢		Tex		Tex	5		Tex		Te	٢
	Tex		Tex			Tex		Tex	٢		Tex		Тех	c		Tex		Tex	<

Kepler Micro-architecture

Redesigned Simultaneous Multiprocessor (SMX)

- Four warp schedulers and 8 dispatch units
 - Each warp scheduler now selects one warp per cycle, and issues up to 2 instructions (inorder) from that warp
 - Double precision instructions can now be paired with other instructions; however, double-precision instructions still require twice the RF bandwidth
 - A double-precision instruction probably still uses 2 dispatchers
 - Warp scheduling is aided by compiler information, which provides the warp scheduler with the latency for a result to be generated

SMX	(
	Wat	n Sel	odulor			Wa	rn Scho	Ins	tructi	on Ca	cne War	m Sek	odulor	_		Wa	n Scho	dulor	_
Di	spate	h	Dispat	ch	Di	ispate	:h	Dispat	tch	Di	spate	h	Dispat	ch	Di	ispate	h	Dispatch	
	÷		÷			÷		+			Ŧ		Ŧ			Ŧ		Ŧ	
							Reg	ister I	File (65,53	6 x 3	2-bit))						
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SELL	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	I D/ST	SELL
Core	Core	Core	DP Offic	Core	Core	Core	DF Offic	20/31	GFU	Core	Core	Core	DP Onit	Core	Core	Core	DP Offic	LD/31	SF0
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SELL	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SELL
						0 ore		LD/OT		Core		Oore		0		Core		LDIOT	
Core	Core	Core	DP Unit	Core	Core	Core	UP Unit	LD/ST	550	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
							64 KB	Inter Shar	conne ed Ma	ct Ne	twork	Cac	he						
	48 KB Read-Only Data Cache																		
	Tex		Tex			Tex		Тех	<u>د</u>		Tex		Тех			Tex		Tex	
	Tex		Tex			Tex		Tex	<		Tex		Tex	{		Tex		Tex	

Kepler Micro-architecture Improved ISA

39 Advanced Computer Architectures, 2021

New ISA

- Each thread can now use up to 255 registers
 - Reduces the number of register spills to memory
- New shuffle instruction that allows swapping thread values within a warp
- New and improved atomic operations:
 - atomicMin
 - atomicMax
 - atomicAnd
 - AtomicOr
 - AtomicXor
- Improvements in Texture Memory to improve performance

SMX																				
	Mar				_	10/-		Ins	tructi	on Ca	che				_	10/-				
Die	spate	p Sci h	Dispat	ch	Di	ispato	np Sche	Disnat	tch	Dispatch Dispatch						Dispatch Dispatch				
+ + + +										↓		Jispui	ion				Jisput +			
							Reg	ister	File (65,53	6 x 3	2-bit)								
		+					+		+			+	-			+			+	
Core	Core	Core	DP Unit	Core	Core	Core	UP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	
63333								Inter	conne	ct Ne	twork									
							64 KB	Shar	ed Me	emor	y / L1	Cac	he							
							48 k	(B Re	ad-O	nly D	ata C	ache								
	Tex		Tex			Tex		Tex	٢		Tex		Tex	(Tex		Tex		
	Tex		Tex			Tex		Tex	<		Tex		Tex			Tex		Tex		

Kepler Micro-architecture Memory Hierarchy

- Improvements at the memory hierarchy:
 - Introduction of a new 48KB cache for constant data
 - In Fermi the L1 constant cache could only be accessed through the Texture path
 - Supports unaligned memory accesses
 - The shared/L1 memory now supports an additional configuration:
 - 16KB shared memory + 48KB L1 cache
 - 32KB shared memory + 32KB L1 cache
 - 48KB shared memory + 16KB L1 cache
 - Double data access bandwidth
 - From 128B/clock in Fermi (16 LD/ST units x 32 bits)
 - To 256B/clock in Kepler (to support 32 LD/ST units)
 - 2x increase in the L2 cache:
 - From 768KB (Fermi) to 1536KB (Kepler)

SMX	SMX Instruction Cache																		
	Wat	n Sel	bodulor		_	Wa	n Scho	Ins	tructi	on Ca	che	n Sok	odulor	_	_	Wa	rn Scho	dulor	
Di	spatc	h II	Dispat	tch	Dispatch Dispatch					Dispatch Dispatch					Dispatch Dispatch				ch
	÷		+								+ +					÷		+	
	_	_		_	_	_	Regi	ster I	File (65,53	6 x 3	2-bit))	_	_	_			
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SEU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SEU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
								Inter	conne	ct Ne	work								
							64 KB	Share	ed Me	emor	y / L1	Cac	he						
48 KB Read-Only Data Cache																			
	Tex		Tex	:		Tex		Tex	٢		Tex		Tex	(Tex		Tex	
	Tex		Tex			Tex		Tex	x Tex Tex Tex Tex Tex Tex Tex Tex							Tex		Tex	

Kepler Micro-architecture Comparison

41

	FERMI GF100	FERMI GF104	KEPLER GK104	KEPLER GK110
Compute Capability	2.0	2.1	3.0	3.5
Threads / Warp	32	32	32	32
Max Warps / Multiprocessor	48	48	64	64
Max Threads / Multiprocessor	1536	1536	2048	2048
Max Thread Blocks / Multiprocessor	8	8	16	16
32-bit Registers / Multiprocessor	32768	32768	65536	65536
Max Registers / Thread	63	63	63	255
Max Threads / Thread Block	1024	1024	1024	1024
Shared Memory Size Configurations (bytes)	16K	16K	16K	16K
	48K	48K	32K	32K
			48K	48K
Max X Grid Dimension	2^16-1	2^16-1	2^32-1	2^32-1
Hyper-Q	No	No	No	Yes
Dynamic Parallelism	No	No	No	Yes

NVIDIA Maxwell Micro-architecture

- The Simultaneous Multiprocessor was redesigned
 - Named SM (Fermi), SMX (Kepler), SMM (Maxwell)
- The new SMM was redesigned to optimize the used resources. Hence, the Maxwell SMM features a reduced number of 128 CUDA cores (vs 192 in Kepler)
- The L2 cache increased to 2MB, distributed in 4 blocks of 512KB (one per Graphics Processing Cluster)

Maxwell Micro-architecture

Simultaneous Multiprocessor Arch. (SMM)

43 Advanced Computer Architectures, 2021

The SM was redesigned in order to simplify control:

- While in previous designs the schedulers shared execution resources, each scheduler now has dedicated execution units
 - Greatly simplifies control
 - Requires additional hardware resources for the execution pipeline, which are now generally less utilized
 - However, this likely decreases the critical path allowing for a increase in operating frequency

Maxwell Micro-architecture Warp scheduling

44 Advanced Computer Architectures, 2021

Several improvements related with the warp scheduling mechanisms

- Stalls down the pipeline are marked at the scoreboard (unlike in Fermi)
 - This suggests a more centralized mechanisms that is able to predict whether the selection of a given warp (which has all operands ready) would result in a pipeline stall

NVIDIA Pascal

GPU	Kepler GK110	Maxwell GM200	Pascal GP100
Compute Capability	3.5	5.2	6.0
Threads / Warp	32	32	32
Max Warps / Multiprocessor	64	64	64
Max Threads / Multiprocessor	2048	2048	2048
Max Thread Blocks / Multiprocessor	16	32	32
Max 32-bit Registers / SM	65536	65536	65536
Max Registers / Block	65536	32768	65536
Max Registers / Thread	255	255	255
Max Thread Block Size	1024	1024	1024
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 КВ	64 KB

AMD GPUs Recent history

TÉCNICO LISBOA

AMD GPUS VLIW4 SIMD vs Quad SIMD

Advanced Computer Architectures, 2021

VLIW4 SIMD

- 64 Single Precision multiply-add
- 1 VLIW Instruction × 4 ALU ops → dependency limited
- Compiler manages register port conflicts
- Specialized, complex compiler scheduling
- Difficult assembly creation, analysis, and debug
- Suited for graphics, less flexible for compute
- Careful optimization required for peak performance

GCN Quad SIMD

- 64 Single Precision multiply-add
- 4 SIMDs × 1 ALU op
 occupancy limited
- No register port conflicts
- Standardized compiler scheduling & optimizations
- Simplified assembly creation, analysis, and debug
- Simplified tool chain development and support
- Stable and predictable performance

AMD GPUs GCN Compute Unit

49 Advanced Computer Architectures, 2021

Input Data (PC/State/Vector Register/Scalar Register)

Architecture comparison

Accelerator	GTX 560 Ti	GTX 660 Ti	GTX 780 Ti	GTX 980	R7 265	R9 290X	5110P
Manufacturer	NVIDIA	NVIDIA	NVIDIA	NVIDIA	AMD	AMD	Intel
Release	2011	2012	2013	2014	2014	2013	2012
Architecture	Fermi	Kepler	Kepler	Maxwell	GCN	GCN	Knights Corner
Cores	384	1344	2880	2048	1024	2816	60
SMs / CUs	8	7	15	16	16	44	
Cores per SM / CU	48	192	192	128	64	64	
Global Memory (MB)	1024	1024	3072	4096	2048	4096	8192
GPU clock (MHz)	1660	1058	1046	1278	925	1000	1053
Memory clock (MHz)	2004	3004	3500	3500	2800	2500	
Peak Memory Bandwidth (GB/s)	128.3	144.2	336	224	179.2	320	320
SP Peak Performance (GFlops/sec)	1263	2843	5040	4612	1894	5632	2022
DP Peak Performance (GFlops/sec)	105	947	1680	144	118	704	1010
L1 Cache Size (KB)	16	16	16	16	16	16	32
L2 Cache Size (KB)	254	393	1536	2097	512	1024	512/core