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1 Types of parallelism

= Flynn’s taxonomy

1 GPU Architectures
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Types of parallelism

Instruction-Level Parallelism
Available when multiple instructions can be executed simultaneously

Exploitable by pipelining execution and through superscalar and VLIW architectures

Data-Level Parallelism

Available by applying the same operation over different data or, equivalently, by
dividing the data among multiple processing elements

Exploitable by:
Using SIMD instructions (vector processing) — fine-grained parallelism
Relying on multiple cores within a single processor — coarse-grained parallelism

Using multiple machines (cluster-level) — coarser-grained parallelism

Task-Level Parallelism

Available by dividing the workload into multiple operations (functions), which are
applied on the same or on different data

Exploited by using multiple processing elements (e.g., different cores or machines)



- Graphics Processing Pipeline

What are the computational requirements?
Which parallelism levels can be exploited?

How to design the architecture?
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Micro-architecture design goals
_ 9 ] Advanced Computer Architectures, 2021

General Purpose
Processors (GPPs)

Special Purpose Processors
(SPPs)

Design Goals

Support for a wide range
of applications

et

Requires a flexible ISA

Efficient support for a
reduced set of applications

et

Can use a specialized ISA

Design Constraints

Speed (Latency /Throughtput)
Cost
Performance
Power and Energy consumption

App App
1 App 2 3

RY.

Micro-architecture

App | App
1 2
ISA

Micro-architecture
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DirectX11 Graphics Pipeline
_10_] Advanced Computer Architectures 201
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Supplies data
(triangles, lines
and points) to
the pipeline.
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Performs
operations on
single vertices such
as transformations,
skinning, and
lighting, producing
a flow of output
vertices.

-

Converts higher-
order surfaces to
triangles for
rendering.

Hull-Shader
Tesellator

Domain-Shader

-

Processes
primitives using
multiple vertices
(three for a
triangle, two for a
line, or a single
vertex for a point);
additional vertices
can be used to
apply edge-
adjacent primitives.

-

Can discard
the primitive,
or emit one
or more new
primitives.

Clips and prepares
primitives for the
pixel shader. Also
determines how to
invoke pixel
shaders.

-

Receives
interpolated data
for a primitive and
generates per-pixel
data such as color.

=

Combines various
types of output
data (pixel shader
values, depth and
stencil information)
with the contents
of the render
target and depth/
stencil buffers to
generate the final
pipeline result.
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Exploitable parallelism

Millions of parallel computations to perform

In general the computation of a given pixel is independent
from the adjacent pixels

Massive data-level parallelism

The modern graphics pipeline is complex, having to
support different operations, over different display areas

Requires support for task-level parallelism
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Exploitable parallelism

Millions of parallel computations to perform

In general the computation of a given pixel is independent
from the adjacent pixels

= Massive data-level parallelism

The modern graphics pipeline is complex, having to
support different operations, over different display areas

= Requires support for task-level parallelism

Modern GPUs provide a uniform way of exploiting both
parallelism levels by means of thread-level parallelism
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Micro-architecture single-core design

Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads
Requires high throughput for high definition displays

What should the be main characteristics?

Out-of-order execution?

Branch Prediction?

Pipeline Length?

Forwarding mechanisms?

Register file size?

SIMD instructions?

VLIW instructions?
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Micro-architecture single-core design
W]

-1 Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads

Requires high throughput for high definition displays

7 What should the be main characteristics?
Out-of-order execution?2 No!

Branch Prediction? No! (resolve hazards by
interleaving execution
with other threads)

Pipeline Length? Long!
Forwarding mechanisms? No!
Regis’rer file size? Very Large! (simultaneous support for multiple running threads)
SIMD instructions¢ Yes! (Each thread corresponds to a different vector element)

VLIV instructions? Yes! (Can be used by allow multiple threads per VLIW)
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1 SIMD-Like: At each cycle, each core issues the same
instruction for a group of threads

Data streams
A B C D

O A single instruction is performed on multiple data

® Reduces pressure on the IF stages
O Simpler control

If there is at least one execution unit per vector

Instruction stream

element, there are no structural (execution) hazards

O If one thread stalls (e.g., memory accesses) all
threads (in the same vector) stall
O Low functional unit utilization

B e.g., when using FP operations, the integer execution units
are stalled
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Micro-architecture single-core design

n Advanced Computer Architectures, 2021

1 VLIW-Like: At each cycle, the core issues a bundle of
independent instructions from one or more threads

o Stalls on one thread have limited impact on the
Data streams

execution of other threads A B c D

O Reduced number of execution units

B Reduces static power consumption

Increases hardware resource usage

Instruction streams

O Requires a high instruction memory (cache)
throughput

O Requires inter-thread parallelism to be extracted
dynamically
B Instruction scheduling is more complex

B Leads to a higher power consumption
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Micro-architecture single-core design

Advanced Computer Architectures, 2021

1 MIMD-Like: At each cycle, the core issues multiple
instructions from multiple vectors (each vector is
composed of a group of n threads)

o Allows increasing the functional unit utilization,
regarding a pure SIMD-like approach

O If one thread stalls, issue a different set of threads
O Threads are statically bound to a given group to
ease thread control

® NVIDIA uses the terminology ‘warp’ to designate a
group of 32 threads

® AMD uses the naming ‘wavefront’ to represent a group
of 64 threads

O Requires the co-existence of multiple hardware
schedulers

Data streams
A B C D

Instruction streams
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Micro-architecture single-core design

Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads

Requires high throughput for high definition displays

How can we scale the performance?
Use simple cores

Allow the co-existence of multiple cores, each supporting a massive number of
threads

Modern GPPs are usually composed of a relatively small number of cores (8-16), each
supporting a small number of running threads (up to 2)

Modern GPUs (e.g., NVIDIA GeForce GTX 2080Ti) are composed of more cores (60
SM:s), each supporting the parallel execution of hundreds of threads (2048), typically
executed in groups (1 warp = 32 threads)
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Micro-architecture single-core design

Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads

Requires high throughput for high definition displays

Instruction Set Architecture?

Modern GPPs use standard scalar ISAs, which are further extended to support a
set of vector instructions

Modern GPUs use special purpose ISA, which are oriented for parallel thread
(warp) execution
Generally supports most general purpose programming operations, although usually

relying on predicated instructions to overcome control operations (branches) that lead to
warp-level divergence
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Micro-architecture single-core design

Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads

Requires high throughput for high definition displays

Memory hierarchy?

Modern GPPs use multiple cache memories (L1, L2, L3) to minimize data access
latency and avoid read-after-load hazards

Modern GPUs typically use only 2 cache levels (L1 and L2), together with a main
(global) memory

Typical GPUs do not have access to the CPU global memory, hence requiring explicit data transfers
between CPU and GPU

Each GPU core usually provides a low latency (reduced size) scratchpad memory, as well as a
constant (texture) memory

The GPU L2 cache memory is shared among all cores

The GPU L1 cache is special: it can be used for register caching and optionally for data caching
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Micro-architecture single-core design

Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads

Requires high throughput for high definition displays

Syncronization?

Modern GPPs provide mechanisms for explicit synchronization and cache
coherence among cores

Modern GPUs typically do not provide for such synchronization mechanisms:

Warps/Wavefronts are grouped in blocks and the execution of all threads within a block is assigned
to a given core. Synchronization within a block of threads is possible, but not among different blocks
(since blocks may be scheduled to different cores).
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Micro-architecture single-core design

Design goals:
Exploit highly parallel and data intensive computations
Provide support for a wide number of threads

Requires high throughput for high definition displays

Problems?

GPU micro-architectures are specially efficient for massively parallel
applications... but... they struggle when
Application requires periodic synchronization with the host processor

The overheads related with memory transfers between the host and the GPU cannot be efficiently
hidden behind kernel execution

Kernels have limited parallelism (remember that GPUs use parallelism to hide data hazards)
Kernels have too much control (there is no branch prediction)

Kernels are too small and have a very fast execution time (overhead of launching the kernel limits
processing performance)



- NVIDIA GPU micro-architectures
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NVIDIA G80 micro-architecture

In November 2006, the G80 micro-architecture introduced:
Support for C programming

Unification of the several processing pipelines, in order to allow support for
vertex, geometry, pixel and computing programs.

Introduction of the single-instruction multiple-thread (SIMT) execution model

Shared memory and barrier synchronization mechanisms for inter-thread
communication

In June 2008, NVIDIA made a revision of the G80 architecture
(codenamed GT200)

The number of stream processing cores increased from 128 to 240
Increased the size of the physical register file
Introduced hardware memory access coalescing

Introduced double precision floating point format
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Design goals (vs GT200)
25

Increase performance (especially double precision)
m New Stream Multiprocessor (SM) architecture

® Dual Warp Scheduler to allow simultaneously fetching and dispatching instructions
from two independent warps

Provide ECC support, to protect data against memory errors
Introduce a true cache hierarchy

Increase shared memory

Faster context switching between programs

Faster atomic operations
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Architecture overview
26

1 Each core is named a SM
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Block scheduling

1 Each core is named a SM

(Simultaneous GPC GPC
. : : <
Multiprocessor) > s
BO B1 B2 B3 B4 BS =
est
1 A high-level GigaThread . EEEm 5
o d D
engine schedules the P i oo :
L] Ll L1
execution of the grig/f _ L1
blocks of threads#fo S PR
O i *  Multiple blocks of threads may be allocated to
‘ oD D the same SM (as long as it has enough hardware
Workload (1 numberdf thread s, |2 ] ==== resources to support it).
0 |
0 .
Block Bl 1 DODD|DEEE|E © In typical workloads, there are more blocks than
I > ==== ==== what is physically supported by the SM. In such
~J | SM SM 1 cases, some blocks may have to await for the
Block 2 | Blo S execution of another block to finish, before
GP being assigned to a specific SM.
7
Block 4 | Block 5 * Once a block is assigned to a given SM, it

remains at that SM until completion.
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Block scheduling

1 Each core is named a SM

(Simultaneous
Multiprocessor)

1 A high-level GigaThread
engine schedules the
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execution of the grid of
blocks of threads to SMs
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*  Multiple kernels (up to 16) may execute
concurrently has long as they are from the same
context

-

GP * However, blocks are dispatched in-order. Thus,

all blocks from one kernel have to be dispatched
(i.e., assigned to a given SM), before starting
dispatching blocks from the next kernel.
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Simultaneous Multiprocessor (SM) Architecture

Each SM is composed of:

|

|

Register file with 32K 32-bit registers
32 SPs, each composed of pipelined FP
and integer ALU units

Supports up to 16 double precision fused-
multiply and add (FMA) operations per
clock

16 Load/Store units

A warp of 32 threads takes 2 cycles to
execute

4 specialized processing units (SPUs)

Supports transcendental instructions such as
sin, cosine, reciprocal, and square root

Executes one thread per clock, i.e., a warp
of 32 threads takes 8 cycles to execute)

2 warp schedulers capable of issuing up
to one instruction per clock cycle from a
single warp of threads

Because threads are assumed to be
independent no inter-warp dependency

check is performed

SP SP SP SP

SP SP SP SP

S0 B B B SP (CUDA core)

Dispatch Port

SP SP SP SP Operand Collector

ALU

FPU

64KB Shared Memory/L1 Cach3

May lead to conflicts if two threads access the same memory
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Warp scheduling
_ 30_] Advonced Computer Architectures 201

Warp Scoreboard Fermi Streaming Multiprocessor (SM)
- (T witing for data
Warp 7 [T LTI TTELLET T TP TTTTT T[] Ready to execute i
werp 6 [T LTI ITITITT waiting for data ~*

Warp 4 [ [ [T LLETTTTTTTITTEEELLLT LT[ ] Ready to execute
HERRRRNNNNRRRRRRRRRRRRRRRNNANY

Ready to execute

Dispatch Port
Operand Collector

s

Result Queue

1 The warp scheduler relies on a multi-port register scoreboard:

o1 The scoreboard keeps track of any registers that are not yet ready

Interconnect Network

/

o a dependency checker block analyzes the scoreboard, to determine
which warps are eligible to be issued.
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Woarp scheduling
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Warp Scoreboard Fermi Streaming Multiprocessor (SM)
- [T waiting for data
Warp 7 [T T T T T T Ready to execute :l:
warp 6 [T L weiting for data ~*
warp 5 [T T T T IT T Executing
Warp 4 [ [ [T TETTTTEETTTTEETTTTTTT T waiting for data
Warp 3 [T TITTTT TR PTTTTT T T[T waiting for data

Warp 4 [ [ [T LLETTTTTTTITTEEELLLT LT[ ] Ready to execute
HERRRRNNNNRRRRRRRRRRRRRRRNNANY

Ready to execute

Dispatch Port
Operand Collector

3 &3

Result Queue

Each cycle:

o Each warp scheduler selects one warp to execute

o If thereis 1 (or less) warps ready to execute, one (or both) of the warp
schedulers stall; this stalls may be overcome by increasing the number of threads in the same SM.

o If there are 3 (or more) warps ready to execute, the warp stalls; the warp may also be stalled
because the next assembly instruction has not yet been fetched, or because of a intra-block
synchronization call (CUDA syncthreads () function)

o Whenever a double-precision operation is issued, the second warp scheduler must always stall. This C
is likely due to bandwidth limitations when fetching data from the register file.

Interconnect Network )

r1 Structural hazards may also occur because the required HW resource is busy, e.g.: C vemem
o The 4 SFUs are already operating over another warp

o The warp requires loading data from memory, but too many outstanding requests have already
been issued
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Instruction Execution
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Warp Scoreboard Fermi Streaming Multiprocessor (SM)

warp 7 [T L L L LT LT LT LT LTL] Ready to execute :l:

Warp 4 [ [ [T LLETTTTTTTITTEEELLLT LT[ ] Ready to execute
HERRRRNNNNRRRRRRRRRRRRRRRNNANY

Ready to execute

Dispatch Port
Operand Collector

3 &3

Result Queue

1 Each warp (group of 32 threads) is executed as
o 16 integer or FP units = 2 cycles per warp
o 16 LD/ST units = 2 cycles per warp
0 4 SFUs = 8 cycles per warp

Interconnect Network

M
/

1 However, in Fermi the CUDA cores work at twice the operating
frequency

o This allows saving processing resources (area), but leads to a higher energy
consumption
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Memory Hierarchy
_ 33 ] Advanced Computer Architectures 201

Warp Scoreboard Fermi Streaming Multiprocessor (SM)

warp 7 [T L L L LT LT LT LT LTL] Ready to execute :l:

Warp 4 [ [ [T LLETTTTTTTITTEEELLLT LT[ ] Ready to execute
HERRRRNNNNRRRRRRRRRRRRRRRNNANY

Ready to execute

Dispatch Port
Operand Collector

3 &3

Result Queue

The SM memory hierarchy is composed of:
o An L1 texture cache memory

1 A 64 KB LT memory, which can be configured as:

o 48KB for shared memory and 16 KB for L1 cache, or

o 16KB for shared memory and 48 KB for L1 cache

Interconnect Network

M
/

1 A 768KB of L2 cache, that serves all load, store and texture requests

o A global RAM memory used to store all data
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Design goals

Introduces dynamic parallelism

Kernels (calls to GPU functions) can now generate new work, generating a new
grid of blocks, which are subsequently sent for execution

Not only it allows to mitigate kernel call overheads, but also frees the CPU,
allowing it to perform other tasks (task-level parallelism)

This also requires the Grid Management Unit to allow suspending the execution of
ongoing work

Dynamic Parallelism
GPU Adapts to Data, Dynamically Launches New Threads

Fermi GPU Kepler GPU

" m
mmmmm
m m

m

L ZEN " A
I o
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Design goals

Introduces dynamic parallelism

Provide support for multiple work-queues, allowing different CPU cores
to issue commands to the GPU on different CUDA streams.

Hyper-Q
CPU Cores Simultaneously Run Tasks on Kepler

FERMI KEPLER

1 MPI Task at a Time 32 Simultaneous MPI Tasks

BN RN
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Design goals

Introduces dynamic parallelism

Kernels (calls to GPU functions) can now generate new work, generating a new
grid of blocks, which are subsequently sent for execution

Not only it allows to mitigate kernel call overheads, but also frees the CPU,
allowing it to perform other tasks (task-level parallelism)

This also requires the Grid Management Unit to allow suspending the execution of
ongoing work
Provide support for multiple work-queues, allowing different CPU cores
to issue commands to the GPU on different CUDA streams.

Allow for data transfers between different GPU devices without needing

to go to the CPU/system memory.

Improve the performance per Watt

Design of a new stream multiprocessor architecture (now named SMX)
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Redesigned Simultaneous Multiprocessor (SMX)

o Large increase in the number of ALUs e —

. . o . Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
] 92 S|ng|e'preC|S|on (OI’ |nteger) CUDA cores Disp:tch Disp:tch Dis&atch Displatch Disp:lch Displatch Disp:tch Dis;ftch

(from 32 in Fermi)

° . . H N 4 4 4 4 4 4 4 4 4 4+ 4+ 3+ 4 4 4+ 4+ 3 . + 4
64 double-precision FP units (from 16 in Fermi)  ERSSERETEEET P EET T T

Register File (65,536 x 32-bit)

SFU SFU

32 SFUS (from 4 in Fermi) Core Core Core - Core Core Core - Lo/sT SFU Core| Core [Core - Core Core Core - Lo/ST | SFU

32 LD/ST UniTS (from 'I 6 in Fermi) Core Core Core - Core Core Core - LoisT | SFU |Core| Core [Core - Core Core Core - Lo/sT | SFU

. R f Core Core Core - Core Core Core - Lo/sT SFU Core Core Core - Core Core Core - LD/sT SFU
I:‘ EGCh dISthCh porf IS Composed o .I 6 Core Core Core- Core Core Core - Lp/sT SFU Core [Core Core - Core Core Core - LD/IST SFU

funCtlonGI Unlts Core Core Core - Core Core Core - Lo/sT SFU | Core| Core Core - Core Core Core - Lo/sT | SFU
Wa rps are execu‘red in 2 groups of ] 6 fhrequ Core Core Core - Core Core Core - Lo/sT SFU Core [Core Core - Core Core Core - Lo/sT | SFU

(hd|f-WG I‘p) Core Core Core - Core Core Core - Lo/ST SFU |[Core Core Core - Core Core Core - LD/ST
Execution units now operate at the standard SM bRl E L L B B B
freq Uency Core Core Core - Core Core Core - Lo/sT SFU Core [Core Core - Core Core Core - LD/ST

° o . Core Core Core - Core Core Core - Lo/sT SFU | Core Core Core - Core Core Core - LDIST
1 The increase in the number of ALUs results in
Core Core Core - Core Core Core - Lo/sT SFU | Core [Core Core - Core Core GCore - LDIST

a linear increase in power consumption; EEENEEEN-FEEEEEEN -
however, the reduction in half of the core P e Rt bl B
operating frequency reduces power Core Core Core - Core Core Core - LorsT | SFU |Core| Core [Core - Core Core Core - LDIST
consumption by 8x "Lt Ll L il EEEl B

“Interconnect Network =0

Power increases linearly with areq, but decreases
cubically with operating frequency.

64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Tex Tex

Tex Tex
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Redesigned Simultaneous Multiprocessor (SMX)
38 |

o1 Four warp schedulers and 8 dispatch insructin Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
‘1. Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
U n I S 2 3 3 S 2 s . S E S

Register File (65,536 x 32-bit)

2 R s 2 3 S 3 4+ 4 4+ & 3
Core Core Core Lo/sT SFU |Core Core Core Core

Core Core Core - Lo/sT SFU |Core Core Core - Core
Core Core Core - Lo/sT | SFU |[Core Core [Core - Core
Core Core Core - Lo/sT SFU Core [Core Core - Core
Core Core Core - Lp/sT SFU Core [Core Core - Core
Core Core Core - Lo/sT SFU [Core Core Core - Core
Core Core Core - Lo/sT SFU |Core Core Core - Core
Core Core Core - Lo/ST SFU |[Core Core Core - Core
Core Core Core - Lo/ST SFU Core (Core Core - Core
Core Core Core - Lo/sT SFU Core [Core Core - Core
Core Core Core - Lo/sT SFU Core Core Core - Core
Core Core Core - Lo/sT SFU | Core [Core Core - Core
Core Core Core - LD/ST SFU Core [Core Core - Core
Core Core Core - Lo/sT SFU Core (Core Core - Core
Core Core Core - LorsT SFU |Core Core Core - Core
Core Core Core - Lo/sT SFU Core Core Core - Core

“Interconnect Network %
64 KB Shared Memory / L1 Cache

4 4 4

o

e
o
r

«
-

Each warp scheduler now selects one warp
per cycle, and issues up to 2 instructions (in-
order) from that warp

Double precision instructions can now be
paired with other instructions; however,

double-precision instructions still require twice
the RF bandwidth

® A double-precision instruction probably still uses 2
dispatchers

Warp scheduling is aided by compiler

information, which provides the warp

scheduler with the latency for a result to be

generated

48 KB Read-Only Data Cache

Tex Tex

Tex Tex
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Improved ISA
39|

SMX
Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
S 2 3 4+ R 2 s . . 2 . =

Register File (65,536 x 32-bit)

S 3 4+ 4 4+ &
Lo/sT SFU |Core Core Core

1 New ISA

Each thread can now use up to 255 registers ore Gore Gore

Core Core Core

-
-
-
-
e
e
o
r

«
-

Core

Core SFU Core Core

®  Reduces the number of register spills to memory

Core Core Core Core SFU Core Core

New shuffle instruction that allows swapping core Core Gore [N cove &0 (B N

Core SFU Core Core

thread values within a warp Gore Gorel core

Core Core Core - Core

Core Core Core

SFU Core Core

New and improved atomic operations:

Core SFU Core Core

Core

® atomicMin Core Core Core SFU [Core Core

Core Core Core Core SFU Core Core

® atomicMax

Core Core Core Core SFU Core Core

®  atomicAnd

Core Core Core Core SFU Core Core

| AfomiCOI‘ Core Core Core

Core SFU Core Core

Core SFU Core Core

| Afomicxol’ Core Core Core

Core Core Core Core SFU Core Core

Improvements in Texture Memory to improve

Core Core Core Core SFU Core Core Core

performance

Core Core Core Core Lo/sT SFU Core Core Core

L ‘Interconnect Network "
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Tex Tex

Tex Tex
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Memory Hierarchy
40 |

o Improvements at the memory hierarchy: - ietructon Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
Infroduchon of d new 48KB cqche for Cons-‘-qnf Dlsp:tch Dlsthh DIS&atCh DISTQCh Dlsp:tch Dlsyftch Dlsp:tch Dls;ftch
d G"’Q Register File (65,536 x 32-bit)
L 3 3 42 4 3 3 4 32 3 3+ & 3+ 3 3 N B
® In Fermi the L1 constant cache could only be i e S I

Lo/ST SFU |Core Core

accessed through the Texture path Core Core Core

Lo/sT SFU | Core Core

m  Supports unaligned memory accesses S R Ed

Core Core Core Lo/sT SFU | Core Core

Core Core Core Lp/sT SFU | Core Core

The shared/L1 memory now supports an Gore Gore Gore
additional configuration: Gore Gors Gore

m 16KB shared memory + 48KB L1 cache Core Core Core
m 32KB shared memory + 32KB L1 cache Gore CGore GCore
m  48KB shared memory + 16KB L1 cache

Lo/sT SFU |Core Core
Lo/sT SFU | Core Core
LD/ST SFU Core Core
LO/IST ' SFU |Core Core
Core Core Core Lo/sT | SFU |Core Core
LD/sT SFU | Core Core

Core Core Core

Core Core Core Lo/sT | SFU |Core Core

Double data access bandwidth Core Core Core

® From 128B/clock in Fermi (16 LD/ST units x 32 bits) 1
= To 256B/clock in Kepler (to support 32 LD/ST units)

Lo/IST ' SFU |Core Core
Lo/sT | SFU |Core Core
LorsT SFU |Core Core Core

Core Core Core

Core Core Core Lo/sT SFU Core Core Core

“Interconnect Network
64 KB Shared Memory / L1 Cache
2x increase in the L2 cache: 48 KB Read-Only Data Cache

m  From 768KB (Fermi) to 1536KB (Kepler) Tex Tex

Tex Tex
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Comparison

FERMI FERMI KEPLER KEPLER

GF100 GF104 GK104 GK110
Compute Capability 2.0 2.1 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 b4
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2"16-1 2"16-1 2732-1 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes
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NVIDIA Maxwell Micro-architecture

The Simultaneous
Multiprocessor was
redesigned

Named SM (Fermi), SMX
(Kepler), SMM (Maxwell)

The new SMM was
redesigned to optimize the
used resources. Hence, the
Maxwell SMM features a
reduced number of 128
CUDA cores (vs 192 in
Kepler)

The L2 cache increased to
2MB, distributed in 4 blocks
of 512KB (one per

Graphics Processing Cluster)

troller

o
o
2
]
£
L)
=

PCI Express 3.0 Host Interface




Maxwell Micro-architecture
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Simultaneous Multiprocessor Arch. (SMM)

Warp Scoreboard

LT TP TP PV TEPTT ] waiting for data
warp 15 [[[[[[TTTTTTTTTITTTTTTTTTTTTTTTT] Ready to execute
warp 14 [[ [T TTTETTTTTETTTTTTTTTTTTTTTT waiting for data
warp 13 [T T TP EPE TP TV LT TTT ] Executing
warp 12 [TTTTTTTITTTTTTTTTTTTTTTTTTTTTTT] Pieetine Busy
warp 11 [T TTTTETTTTTTTTTTTTTTTTTTTTTTT] waiting for data
warp 10 [T TITTTTTTTTTTTTTTTTTTTTTTTT] Executing
warp 8 [TTTTTTTTTTTTITTITTTTTTTTTTTTTTT] Ready to execute
Warp 8 [[ [ [ TLLTTILTTTETTTTEETTETTTTTTT] Pipetine Busy
Warp 7 [ [ {TTEPTTPT TR TRTTRTTTETTTTT 1] Ready to execute
Warp6|||||||||||||||||||||||||||||||||Waitingformemoryoperationresources
warp 5 [T T T TR Executing
warp 4 [T TITT T TP T TP TP TTFTTITT AT Brocked by syncrhonization
warp 3 [TTTTTTTTTTTTTITTITTTTTTTTTTTTTTT] waiting for data
warp 2 [TTTTTTTTTTTTTTTTTITTTTTTTTTTT] Executing
Warp 1 [T TTTITTTTTTTTTTATTATTITTTTTT T Ready to execute
Warp O [ [ [ [ [[PTTTTTTPETTTTTEETTTTTTTLT]] Ready to execute

The SM was redesigned in order to simplify control:
o While in previous designs the schedulers shared execution resources, each
scheduler now has dedicated execution units
Greatly simplifies control

Requires additional hardware resources for the execution pipeline, which are now
generally less utilized

However, this likely decreases the critical path allowing for a increase in operating
frequency

PolyMorph Engine 3.0

Tessellator

Atribute Setup.

Stream Qutput

Warp Scheduler

Dispatch Unit Bispatch Uit
+ <+

Register File (16,384 x 32-bit)

Cors | | Core | Core | LDiST

Core Core

e Core

Core
Cora
Cors

Core

Warp Scheduler

Dispatoh Unit Dispatch Unit
-+ -+

Register File (16,384 x 32-bit)

Core | | Core Core LDST
Core  Cors
Core

Core

Dispatch Unit Dispatch Unit
*

Register File (16,384 x 32-bit)

Core Core Core LD/ST

Core

Warp Scheduler
Dispatch Unit
£ 2

Rogister File (16,384 x 32-bit)

Core |Core |Core | LOBT
Core  Core
Core  Core
Core
Core

Core LD
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Woarp scheduling
44|

Warp Scoreboard

LT TP TP PV TEPTT ] waiting for data
warp 15 [[[[[[TTTTTTTTTITTTTTTTTTTTTTTTT] Ready to execute
warp 14 [[ [T TTTETTTTTETTTTTTTTTTTTTTTT waiting for data
warp 13 [T T TP EPE TP TV LT TTT ] Executing | (I
warp 12 [TTTTTTTITTTTTTTTTTTTTTTTTTTTTTT] Pieetine Busy ‘mmmw
warp 11 [T TTTTETTTTTTTTTTTTTTTTTTTTTTT] waiting for data —— ———
warp 10 [T TITTTTTTTTTTTTTTTTTTTTTTTT] Executing — ———
warp 8 [TTTTTTTTTTTTITTITTTTTTTTTTTTTTT] Ready to execute e e £6
Warp 8 [[ [ [ TLLTTILTTTETTTTEETTETTTTTTT] Pipetine Busy 11 B o
Warp 7 [ [ {TTEPTTPT TR TRTTRTTTETTTTT 1] Ready to execute 1 | B = BN
Warp6|||||||||||||||||||||||||||||||||Waitingformemoryoperationresources re | [Core [Core [Core i »  Core
warp 5 [T T T TR Executing . e
warp 4 [T TITT T TP T TP TP TTFTTITT AT Brocked by syncrhonization — L —
warp 3 [TTTTTTTTTTTTTITTITTTTTTTTTTTTTTT] waiting for data ——1— —
warp 2 [TTTTTTTTTTTTTTTTTITTTTTTTTTTT] Executing
Warp 1 [T TTTITTTTTTTTTTATTATTITTTTTT T Ready to execute —
Warp O [ [ [ [ [[PTTTTTTPETTTTTEETTTTTTTLT]] Ready to execute
Instruction Buffer Instruction Buffer
Warp Scheduler Warp Scheduler
Several improvements related with the warp scheduling mechanisms T 1 T I
= B
o Stalls down the pipeline are marked at the scoreboard (unlike in Fermi)

This suggests a more centralized mechanisms that is able to predict whether the
selection of a given warp (which has all operands ready) would result in a pipeline
stall




NVIDIA Pascal

GPU
Compute Capability

Threads / Warp

Max Warps / Multiprocessor

Max Threads / Multiprocessor

Max Thread Blocks / Multiprocessor
Max 32-bit Registers / SM

Max Registers / Block

Max Registers / Thread

Max Thread Block Size

Shared Memory Size / SM

Kepler GK110
3.5

32

64

2048

16

65536

65536

255

1024

16 KB/32 KB/48 KB

Maxwell GM200
5.2

32

64
2048
32
65536
32768
255
1024
96 KB

TECNICO
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Pascal GP100
6.0

32

64
2048
32
65536
65536
255
1024
64 KB
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AMD GPUs
Recent history

15T ERA:
Fixed Function

3D Geometry Transformation

x m, 1, my  my |
m, e m,

m, &l

Lighting

C,=k L+ >, Att (kL oN)+k(R,oV))

n-dights

2 e
Simple Shaders

Memory Interface
8 Vertex Pipes

Setup Engine

Pixel Shader Core

16 Pixel Pipes
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3RD ERA:
Graphics Parallel Core

VLIWS

Aun Youesg

General Purpose
Registers

N
VLIW4

TIT

Stream
1 Processing Units |

Jun Yuesg

“General Purpose

Registers ¢




AMD GPUs
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VLIWA4 SIMD vs Quad SIMD

VLIW4 SIMD

64 Single Precision multiply-add

1 VLW Instruction x 4 ALU ops = dependency limited
Compiler manages register port conflicts

Specialized, complex compiler scheduling

Difficult assembly creation, analysis, and debug

Suited for graphics, less flexible for compute

Careful optimization required for peak performance

GCN Quad SIMD

64 Single Precision multiply-add

4 SIMDs x 1 ALU op =2 occupancy limited

No register port conflicts

Standardized compiler scheduling & optimizations
Simplified assembly creation, analysis, and debug
Simplified tool chain development and support

Stable and predictable performance
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GCN Compute Unit

Input Data (PC/State/Vector Register/Scalar Register)

Message Bus
SIMDO Branch & ] '

PC&IB &= - Message Unit

10 Wave
_g ] Export/GDS Decode
g SIMD1 g ®= “Vector Memory Decode * * * =
3 PC&IB g
_‘é 10 Wave 8 — P TR SIMDO SIMD1 SIMD2 SIMD3 o :xport
us
E g ; Decode 8 KB Registers 64 KB 64 KB 64 KB 64 KB Write
= SIMD?2 o Registers 48) Registers 4 Registers @ Registers Dat Read/
0 = Integer ALU ” ata Write
‘§ PC&IB o MP MP MP MP L1 ¥ ieach
‘E 10 Wave 9 Vector Vector Vector Vector Vector Cache -
£ $ Decode ALU ALU ALU ALU
SIMD3 16KB
PC&IB
10 Wave LDS 64 KB LDS Memory h
Decode
4 CU Shared 16KB Scalar Read Only L1 Cache Read/
Request Write

Arbiter
4 CU Shared 32KB Instruction L1 Cache L2 Cache
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Architecture comparison
s

Accelerator GTX560Ti GTX660Ti GTX780Ti GTX980 R7265 R9 290X 5110P

Manufacturer NVIDIA NVIDIA NVIDIA NVIDIA AMD AMD Intel
Release 2011 2012 2013 2014 2014 2013 2012
Architecture Fermi Kepler Kepler Maxwell GCN GCN Knights Corner
Cores 384 1344 2880 2048 1024 28186 60
SMs /CUs 8 7 15 16 16 44

Cores per SM/CU 48 192 192 128 64 64

Global Memory (MB) 1024 1024 3072 4096 2048 4096 8192
GPU clock (MHz) 1660 1058 1046 1278 925 1000 1053
Memory clock (MHz) 2004 3004 3500 3500 2800 2500

Peak Memory Bandwidth (GB/s) 128.3 1442 336 224 179.2 320 320
SP Peak Performance (GFlops/sec) 1263 2843 5040 4612 1894 5632 2022
DP Peak Performance (GFlops/sec) 105 947 1680 144 118 704 1010
L1 Cache Size (KB) 16 186 16 16 16 16 32

L2 Cache Size (KB) 254 393 1536 2097 512 1024 512/core




