
GRAPHICS PROCESSING UNITS
Slides by: Pedro Tomás & Leonel Sousa

Additional reading: Computer Architecture: A Quantitative Approach”, 6th edition, Chapter 4, John L. 
Hennessy and David A. Patterson, Morgan Kaufmann, 2017

ADVANCED COMPUTER ARCHITECTURES

ARQUITECTURAS AVANÇADAS DE COMPUTADORES (AAC)



Advanced Computer Architectures, 2021

Outline

2

 Types of parallelism

 Flynn’s taxonomy

 GPU Architectures



Advanced Computer Architectures, 2021

Types of parallelism

3

 Instruction-Level Parallelism

 Available when multiple instructions can be executed simultaneously

 Exploitable by pipelining execution and through superscalar and VLIW architectures

 Data-Level Parallelism

 Available by applying the same operation over different data or, equivalently, by 

dividing the data among multiple processing elements

 Exploitable by:

◼ Using SIMD instructions (vector processing) – fine-grained parallelism

◼ Relying on multiple cores within a single processor – coarse-grained parallelism

◼ Using multiple machines (cluster-level) – coarser-grained parallelism

 Task-Level Parallelism

 Available by dividing the workload into multiple operations (functions), which are 

applied on the same or on different data

 Exploited by using multiple processing elements (e.g., different cores or machines)



What are the computational requirements?

Which parallelism levels can be exploited?

How to design the architecture?

Graphics Processing Pipeline8



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture design goals
9

General Purpose 

Processors (GPPs)

Special Purpose Processors 

(SPPs)

Design Goals Support for a wide range 

of applications

Requires a flexible ISA

Efficient support for a 

reduced set of applications

Can use a specialized ISA

Design Constraints Speed (Latency/Throughtput)

Cost

Performance

Power and Energy consumption

ISA

Micro-architecture

App 

1 App 2

App 

3

ISA

Micro-architecture

App 

1

App 

2



Advanced Computer Architectures, 2021

Graphics processing

DirectX11 Graphics Pipeline
10

Tessellation 
Stages

Input Assembler 
stage

Supplies data 
(triangles, lines 
and points) to 
the pipeline.

Vertex Shader
Stage

Performs 
operations on 
single vertices such 
as transformations, 
skinning, and 
lighting, producing 
a flow of output 
vertices.

Converts higher-
order surfaces to 
triangles for 
rendering.

Tesellator

Hull-Shader

Domain-Shader

Geometry 
Shader
Stage

Processes 
primitives using 
multiple vertices 
(three for a 
triangle, two for a 
line, or a single 
vertex for a point); 
additional vertices 
can be used to 
apply edge-
adjacent primitives.

Can discard 
the primitive, 
or emit one 
or more new 
primitives.

3D3D

Rasterizer Stage

Clips and prepares 
primitives for the 
pixel shader. Also 
determines how to 
invoke pixel 
shaders.

Pixel-Shader 
Stage

Receives 
interpolated data 
for a primitive and 
generates per-pixel 
data such as color.

Output Merger 
Stage

Combines various 
types of output 
data (pixel shader 
values, depth and 
stencil information) 
with the contents 
of the render 
target and depth/
stencil buffers to 
generate the final 
pipeline result.

2D2D

Memory



Advanced Computer Architectures, 2021

Graphics processing

Exploitable parallelism
11

 Millions of parallel computations to perform

 In general the computation of a given pixel is independent 

from the adjacent pixels

Massive data-level parallelism

 The modern graphics pipeline is complex, having to 

support different operations, over different display areas

Requires support for task-level parallelism



Advanced Computer Architectures, 2021

Graphics processing

Exploitable parallelism
12

 Millions of parallel computations to perform

 In general the computation of a given pixel is independent 

from the adjacent pixels

➔ Massive data-level parallelism

 The modern graphics pipeline is complex, having to 

support different operations, over different display areas

➔ Requires support for task-level parallelism

 Modern GPUs provide a uniform way of exploiting both 

parallelism levels by means of thread-level parallelism



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
13

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 What should the be main characteristics?

 Out-of-order execution?

 Branch Prediction?

 Pipeline Length?

 Forwarding mechanisms?

 Register file size?

 SIMD instructions?

 VLIW instructions?



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
14

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 What should the be main characteristics?

 Out-of-order execution? No!

 Branch Prediction? No!

 Pipeline Length? Long!

 Forwarding mechanisms? No!

 Register file size? Very Large! (simultaneous support for multiple running threads)

 SIMD instructions? Yes! (Each thread corresponds to a different vector element)

 VLIW instructions? Yes! (Can be used by allow multiple threads per VLIW)

(resolve hazards by 

interleaving execution 

with other threads)



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
15

 SIMD-Like: At each cycle, each core issues the same 

instruction for a group of threads

 A single instruction is performed on multiple data

◼ Reduces pressure on the IF stages

 Simpler control

 If there is at least one execution unit per vector 

element, there are no structural (execution) hazards

 If one thread stalls (e.g., memory accesses) all 

threads (in the same vector) stall

 Low functional unit utilization 

◼ e.g., when using FP operations, the integer execution units 

are stalled



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
16

 VLIW-Like: At each cycle, the core issues a bundle of 

independent instructions from one or more threads

 Stalls on one thread have limited impact on the 

execution of other threads

 Reduced number of execution units

◼ Reduces static power consumption

 Increases hardware resource usage

 Requires a high instruction memory (cache) 

throughput 

 Requires inter-thread parallelism to be extracted 

dynamically

◼ Instruction scheduling is more complex

◼ Leads to a higher power consumption



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
17

 MIMD-Like: At each cycle, the core issues multiple 

instructions from multiple vectors (each vector is 

composed of a group of n threads)

 Allows increasing the functional unit utilization, 

regarding a pure SIMD-like approach

 If one thread stalls, issue a different set of threads

 Threads are statically bound to a given group to 

ease thread control

◼ NVIDIA uses the terminology ‘warp’ to designate a 

group of 32 threads

◼ AMD uses the naming ‘wavefront’ to represent a group 

of 64 threads

 Requires the co-existence of multiple hardware 

schedulers



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
18

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 How can we scale the performance?

 Use simple cores

 Allow the co-existence of multiple cores, each supporting a massive number of 

threads

◼ Modern GPPs are usually composed of a relatively small number of cores (8-16), each 

supporting a small number of running threads (up to 2)

◼ Modern GPUs (e.g., NVIDIA GeForce GTX 2080Ti) are composed of more cores (60 

SMs), each supporting the parallel execution of hundreds of threads (2048), typically 

executed in groups (1 warp = 32 threads)



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
19

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 Instruction Set Architecture?

 Modern GPPs use standard scalar ISAs, which are further extended to support a 

set of vector instructions

 Modern GPUs use special purpose ISA, which are oriented for parallel thread 

(warp) execution

◼ Generally supports most general purpose programming operations, although usually 

relying on predicated instructions to overcome control operations (branches) that lead to 

warp-level divergence



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
20

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 Memory hierarchy?

 Modern GPPs use multiple cache memories (L1, L2, L3) to minimize data access 

latency and avoid read-after-load hazards 

 Modern GPUs typically use only 2 cache levels (L1 and L2), together with a main 

(global) memory

◼ Typical GPUs do not have access to the CPU global memory, hence requiring explicit data transfers 

between CPU and GPU

◼ Each GPU core usually provides a low latency (reduced size) scratchpad memory, as well as a 

constant (texture) memory

◼ The GPU L2 cache memory is shared among all cores

◼ The GPU L1 cache is special: it can be used for register caching and optionally for data caching



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
21

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 Syncronization?

 Modern GPPs provide mechanisms for explicit synchronization and cache 

coherence among cores

 Modern GPUs typically do not provide for such synchronization mechanisms:

◼ Warps/Wavefronts are grouped in blocks and the execution of all threads within a block is assigned 

to a given core. Synchronization within a block of threads is possible, but not among different blocks 

(since blocks may be scheduled to different cores).



Advanced Computer Architectures, 2021

Graphics processing

Micro-architecture single-core design
22

 Design goals:

 Exploit highly parallel and data intensive computations

 Provide support for a wide number of threads

 Requires high throughput for high definition displays

 Problems?

 GPU micro-architectures are specially efficient for massively parallel 

applications… but… they struggle when

◼ Application requires periodic synchronization with the host processor

◼ The overheads related with memory transfers between the host and the GPU cannot be efficiently 

hidden behind kernel execution

◼ Kernels have limited parallelism (remember that GPUs use parallelism to hide data hazards)

◼ Kernels have too much control (there is no branch prediction)

◼ Kernels are too small and have a very fast execution time (overhead of launching the kernel limits 

processing performance)



NVIDIA GPU micro-architectures23



Advanced Computer Architectures, 2021

NVIDIA G80 micro-architecture
24

 In November 2006, the G80 micro-architecture introduced:

 Support for C programming

 Unification of the several processing pipelines, in order to allow support for 

vertex, geometry, pixel and computing programs.

 Introduction of the single-instruction multiple-thread (SIMT) execution model

 Shared memory and barrier synchronization mechanisms for inter-thread 

communication

 In June 2008, NVIDIA made a revision of the G80 architecture 

(codenamed GT200)

 The number of stream processing cores increased from 128 to 240

 Increased the size of the physical register file

 Introduced hardware memory access coalescing

 Introduced double precision floating point format



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Design goals (vs GT200)
25

 Increase performance (especially double precision)

◼ New Stream Multiprocessor (SM) architecture

◼ Dual Warp Scheduler to allow simultaneously fetching and dispatching instructions 

from two independent warps

 Provide ECC support, to protect data against memory errors

 Introduce a true cache hierarchy

 Increase shared memory

 Faster context switching between programs

 Faster atomic operations



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Architecture overview
26

 Each core is named a SM 

(Simultaneous 

Multiprocessor)

 A high-level GigaThread

engine schedules the 

execution of the grid of 

blocks of threads to SMs

Workload (total number of threads)



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Block scheduling
27

 Each core is named a SM 

(Simultaneous 

Multiprocessor)

 A high-level GigaThread

engine schedules the 

execution of the grid of 

blocks of threads to SMs

Workload (total number of threads)

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

• Multiple blocks of threads may be allocated to 

the same SM (as long as it has enough hardware 

resources to support it).

• In typical workloads, there are more blocks than 

what is physically supported by the SM. In such 

cases, some blocks may have to await for the 

execution of another block to finish, before 

being assigned to a specific SM.

• Once a block is assigned to a given SM, it 

remains at that SM until completion.

B0 B1 B2 B3 B4 B5



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Block scheduling
28

 Each core is named a SM 

(Simultaneous 

Multiprocessor)

 A high-level GigaThread

engine schedules the 

execution of the grid of 

blocks of threads to SMs

Workload (total number of threads)

• Multiple kernels (up to 16) may execute 

concurrently has long as they are from the same 

context

• However, blocks are dispatched in-order. Thus, 

all blocks from one kernel have to be dispatched 

(i.e., assigned to a given SM), before starting 

dispatching blocks from the next kernel.

B0 B1 B2 B3 B4 B5 B5 B0

B1 B2 B3 B4 B5 B6 B7 B8

Kernel 1 Kernel 2

Un-scheduled



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Simultaneous Multiprocessor (SM) Architecture
29

Each SM is composed of:

 Register file with 32K 32-bit registers

 32 SPs, each composed of pipelined FP 

and integer ALU units

 Supports up to 16 double precision fused-

multiply and add (FMA) operations per 

clock

 16 Load/Store units

 A warp of 32 threads takes 2 cycles to 

execute

 4 specialized processing units (SPUs)

 Supports transcendental instructions such as 

sin, cosine, reciprocal, and square root 

 Executes one thread per clock, i.e., a warp 

of 32 threads takes 8 cycles to execute)

 2 warp schedulers capable of issuing up 

to one instruction per clock cycle from a 

single warp of threads

 Because threads are assumed to be 

independent no inter-warp dependency 

check is performed

May lead to conflicts if two threads access the same memory 

position



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Warp scheduling
30

 The warp scheduler relies on a multi‐port register scoreboard:

 The scoreboard keeps track of any registers that are not yet ready

 a dependency checker block analyzes the scoreboard, to determine 

which warps are eligible to be issued.



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Warp scheduling
31

Each cycle:

 Each warp scheduler selects one warp to execute

 If there is 1 (or less) warps ready to execute, one (or both) of the warp 

schedulers stall; this stalls may be overcome by increasing the number of threads in the same SM.

 If there are 3 (or more) warps ready to execute, the warp stalls; the warp may also be stalled 

because the next assembly instruction has not yet been fetched, or because of a intra-block 

synchronization call (CUDA _syncthreads() function)

 Whenever a double-precision operation is issued, the second warp scheduler must always stall. This 

is likely due to bandwidth limitations when fetching data from the register file.

 Structural hazards may also occur because the required HW resource is busy, e.g.:

 The 4 SFUs are already operating over another warp

 The warp requires loading data from memory, but too many outstanding requests have already 

been issued



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Instruction Execution
32

 Each warp (group of 32 threads) is executed as

 16 integer or FP units ➔ 2 cycles per warp

 16 LD/ST units ➔ 2 cycles per warp

 4 SFUs ➔ 8 cycles per warp

 However, in Fermi the CUDA cores work at twice the operating 

frequency

 This allows saving processing resources (area), but leads to a higher energy 

consumption



Advanced Computer Architectures, 2021

Fermi Micro-architecture

Memory Hierarchy
33

The SM memory hierarchy is composed of:

 An L1 texture cache memory

 A 64 KB L1 memory, which can be configured as:

 48KB for shared memory and 16 KB for L1 cache, or

 16KB for shared memory and 48 KB for L1 cache

 A 768KB of L2 cache, that serves all load, store and texture requests

 A global RAM memory used to store all data



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Design goals
34

 Introduces dynamic parallelism

◼ Kernels (calls to GPU functions) can now generate new work, generating a new 

grid of blocks, which are subsequently sent for execution

◼ Not only it allows to mitigate kernel call overheads, but also frees the CPU, 

allowing it to perform other tasks (task-level parallelism)

◼ This also requires the Grid Management Unit to allow suspending the execution of 

ongoing work



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Design goals
35

 Introduces dynamic parallelism

 Provide support for multiple work-queues, allowing different CPU cores 

to issue commands to the GPU on different CUDA streams.



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Design goals
36

 Introduces dynamic parallelism

◼ Kernels (calls to GPU functions) can now generate new work, generating a new 

grid of blocks, which are subsequently sent for execution

◼ Not only it allows to mitigate kernel call overheads, but also frees the CPU, 

allowing it to perform other tasks (task-level parallelism)

◼ This also requires the Grid Management Unit to allow suspending the execution of 

ongoing work

 Provide support for multiple work-queues, allowing different CPU cores 

to issue commands to the GPU on different CUDA streams.

 Allow for data transfers between different GPU devices without needing 

to go to the CPU/system memory.

 Improve the performance per Watt

◼ Design of a new stream multiprocessor architecture (now named SMX)



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Redesigned Simultaneous Multiprocessor (SMX)
37

 Large increase in the number of ALUs

 192 single-precision (or integer) CUDA cores 
(from 32 in Fermi)

 64 double-precision FP units (from 16 in Fermi)

 32 SFUs (from 4 in Fermi)

 32 LD/ST units (from 16 in Fermi)

 Each dispatch port is composed of 16 
functional units

 Warps are executed in 2 groups of 16 threads 
(half-warp)

 Execution units now operate at the standard SM 
frequency

 The increase in the number of ALUs results in 
a linear increase in power consumption; 
however, the reduction in half of the core 
operating frequency reduces power 
consumption by 8x

 Power increases linearly with area, but decreases 
cubically with operating frequency.



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Redesigned Simultaneous Multiprocessor (SMX)
38

 Four warp schedulers and 8 dispatch 

units

 Each warp scheduler now selects one warp 

per cycle, and issues up to 2 instructions (in-

order) from that warp

 Double precision instructions can now be 

paired with other instructions; however, 

double-precision instructions still require twice 

the RF bandwidth

◼ A double-precision instruction probably still uses 2 

dispatchers

 Warp scheduling is aided by compiler 

information, which provides the warp 

scheduler with the latency for a result to be 

generated



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Improved ISA
39

 New ISA

 Each thread can now use up to 255 registers

◼ Reduces the number of register spills to memory

 New shuffle instruction that allows swapping 

thread values within a warp

 New and improved atomic operations:

◼ atomicMin

◼ atomicMax

◼ atomicAnd

◼ AtomicOr

◼ AtomicXor

 Improvements in Texture Memory to improve 

performance



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Memory Hierarchy
40

 Improvements at the memory hierarchy:

 Introduction of a new 48KB cache for constant 
data

◼ In Fermi the L1 constant cache could only be 
accessed through the Texture path

◼ Supports unaligned memory accesses

 The shared/L1 memory now supports an 
additional configuration:

◼ 16KB shared memory + 48KB L1 cache

◼ 32KB shared memory + 32KB L1 cache

◼ 48KB shared memory + 16KB L1 cache

 Double data access bandwidth

◼ From 128B/clock in Fermi (16 LD/ST units x 32 bits)

◼ To 256B/clock in Kepler (to support 32 LD/ST units)

 2x increase in the L2 cache:

◼ From 768KB (Fermi) to 1536KB (Kepler)



Advanced Computer Architectures, 2021

Kepler Micro-architecture

Comparison
41



Advanced Computer Architectures, 2021

NVIDIA Maxwell Micro-architecture
42

 The Simultaneous 
Multiprocessor was 
redesigned

 Named SM (Fermi), SMX 
(Kepler), SMM (Maxwell)

 The new SMM was 
redesigned to optimize the 
used resources. Hence, the 
Maxwell SMM features a 
reduced number of 128 
CUDA cores (vs 192 in 
Kepler)

 The L2 cache increased to 
2MB, distributed in 4 blocks 
of 512KB (one per 
Graphics Processing Cluster)



Advanced Computer Architectures, 2021

Maxwell Micro-architecture

Simultaneous Multiprocessor Arch. (SMM)
43

The SM was redesigned in order to simplify control:

 While in previous designs the schedulers shared execution resources, each 

scheduler now has dedicated execution units

 Greatly simplifies control

 Requires additional hardware resources for the execution pipeline, which are now 

generally less utilized

 However, this likely decreases the critical path allowing for a increase in operating 

frequency



Advanced Computer Architectures, 2021

Maxwell Micro-architecture

Warp scheduling
44

Several improvements related with the warp scheduling mechanisms

 Stalls down the pipeline are marked at the scoreboard (unlike in Fermi)

 This suggests a more centralized mechanisms that is able to predict whether the 

selection of a given warp (which has all operands ready) would result in a pipeline 

stall



Advanced Computer Architectures, 2021

NVIDIA Pascal
45



AMD GPU micro-architectures46



Advanced Computer Architectures, 2021

AMD GPUs

Recent history
47



Advanced Computer Architectures, 2021

AMD GPUs

VLIW4 SIMD vs Quad SIMD
48



Advanced Computer Architectures, 2021

AMD GPUs

GCN Compute Unit
49



Advanced Computer Architectures, 2021

Architecture comparison
50


